Making Sense of Unstructured Text Data

نویسندگان

  • Lin Li
  • William M. Campbell
  • Cagri Dagli
  • Joseph P. Campbell
چکیده

Many network analysis tasks in social sciences rely on pre-existing data sources that were created with explicit relations or interactions between entities under consideration. Examples include email logs, friends and followers networks on social media, communication networks, etc. In these data, it is relatively easy to identify who is connected to whom and how they are connected. However, most of the data that we encounter on a daily basis are unstructured free-text data, e.g., forums, online marketplaces, etc. It is considerably more difficult to extract network data from unstructured text. In this work, we present an end-to-end system for analyzing unstructured text data and transforming the data into structured graphs that are directly applicable to a downstream application. Specifically, we look at social media data and attempt to predict the most indicative words from users’ posts. The resulting keywords can be used to construct a context+content network for downstream processing such as graph-based analysis and learning. With that goal in mind, we apply our methods to the application of cross-domain entity resolution. The performance of the resulting system with automatic keywords shows improvement over the system with userannotated hashtags.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replace Manual Coding of Customer Survey Comments with Text Mining: A Story of Discovery with Text as Data in the Public Sector

A common approach to analyzing open-ended customer survey data is to manually assign codes to text observations. Basic descriptive statistics of the codes are then calculated. Subsequent reporting is an attempt to explain customer opinions numerically. While this approach provides numbers and percentages, it offers little insight. In fact, this method is tedious and time-consuming and can even ...

متن کامل

Framework for Interrogative Knowledge Identification

The difficulty of defining and capitalizing the knowledge in an organization from the business data captured in text files. These text files defined as unstructured document that is without a specific format example, plain text. Hence, this paper presents an Interrogative Knowledge Identification framework to identify unstructured documents that encompassed knowledge, information, and data. It ...

متن کامل

Assessing the Quality of Unstructured Data: An Initial Overview

In contrast to structured data, unstructured data such as texts, speech, videos and pictures do not come with a data model that enables a computer to use them directly. Nowadays, computers can interpret the knowledge encoded in unstructured data using methods from text analytics, image recognition and speech recognition. Therefore, unstructured data are used increasingly in decision-making proc...

متن کامل

EMAS Framework For Text Plagarism Detection ( Evolutionary Multi - Agent System )

Research ultimate goal remains to Enhance Science and Technology. Scientists, Research scholars and teacher are dedicated to research. But It has been Observed that in other to achieve success research methodology is been plagiarized. Investigating and Identifying Genuine Research innovation is demand of Todays research domain. Idea Innovation and Invention are vital for today’s research domain...

متن کامل

Text Analytics to Data Warehousing

─ Information hidden or stored in unstructured data can play a critical role in making decisions, understanding and conducting other business functions. Integrating data stored in both structured and unstructured formats can add significant value to an organization. With the extent of development happening in Text Mining and technologies to deal with unstructured and semi structured data like X...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1704.05505  شماره 

صفحات  -

تاریخ انتشار 2017